Bond Price Formula:
From: | To: |
The bond price formula calculates the present value of all future cash flows from a bond, including periodic coupon payments and the final face value payment. It's fundamental to bond valuation and fixed income analysis.
The calculator uses the bond pricing formula:
Where:
Explanation: The formula discounts all future cash flows back to present value using the required yield as the discount rate.
Details: Accurate bond pricing is essential for investors, portfolio managers, and financial institutions to determine fair value, assess investment opportunities, and manage interest rate risk.
Tips: Enter face value in currency units, coupon rate and yield as decimals (e.g., 5% = 0.05), years to maturity, and select payment frequency. All values must be positive.
Q1: What is the relationship between bond price and yield?
A: Bond price and yield have an inverse relationship. When yields rise, bond prices fall, and vice versa.
Q2: What does it mean when a bond trades at premium/discount?
A: Premium: price > face value (coupon rate > market yield). Discount: price < face value (coupon rate < market yield).
Q3: How does payment frequency affect bond price?
A: More frequent payments generally increase the bond's price slightly due to earlier receipt of cash flows.
Q4: What are the limitations of this calculation?
A: Assumes constant yield curve, no default risk, and fixed coupon payments. Doesn't account for callable or puttable features.
Q5: How is this different from zero-coupon bond pricing?
A: Zero-coupon bonds only have the face value payment at maturity, so the formula simplifies to P = F ÷ (1 + r)^n.